
S M A R T
JOURNAL OF BUSINESS MANAGEMENT STUDIES

Vol.5 No. 2 July - December 2009

SCIENTIFIC MANAGEMENT AND ADVANCED RESEARCH TRUST
(SMART)

TIRUCHIRAPPALLI (INDIA)
http://www.geocities.com/smartbard

ISSN 0973 - 1598

(An International Serial of Scientific Management and Advanced Research Trust)

Chief Editor

M. SELVAM, M.Com., Ph.D.,

SMART Journal is indexed and abstracted by Ulrich’s Periodicals Directory,
Intute Catalogue (University of Manchester) and CABELL’S Directory

Bharathidasan University,
India

SMART Journal of Business Management Studies Vol. 5 No.2 July - December 2009

PERFORMANCE ANALYSIS ON ASSOCIATION RULE IN DATA MINING

T. Muthukumar
Research Scholar, Sathyabama University, Chennai, Tamil Nadu, India

(Assistant Director-Board of Studies – The Institute of Chartered Accountants of India – New Delhi)

M. Ramasamy,
Dean, PG Studies, Madha Engineering College, Chennai, Tamil Nadu, India

Abstract
One of the most important problems in data mining is to find association rules. The
association rule mining can be classified into two main categories: the level-wise algorithms
and the tree based algorithms. The level-wise algorithm like Apriori, scan the entire
database multiple times and also generate a huge number of candidate sets. It also needs
to repeatedly scan the database and check a large set of candidates by pattern matching.
Tree based algorithms, like FP-tree, scan the database only twice. One scan may be needed
for FP-tree construction and another scan for adding new items into the tree. But it takes
more time when new data are added to an existing database. Another tree based algorithm,
P-Tree is constructed by a single scan of a database and it updates the P-tree by one scan
of new data. The above said three algorithms are implemented by using C++/java/.net and
their performances are evaluated by using synthetic dataset with respect to number of
scanning of dataset. The performance study shows that in majority of cases, Pattern Tree
achieves better performance and efficiency than Apriori and FP algorithms.

Keywords: Data mining, association rules, level wise algorithms, Pattern Tree.

1. Introduction

Several algorithms have been proposed in
the literature to address the problem of mining
association rules [2]. Existing association rule
mining algorithms suffer from many problems
while mining massive transactional datasets.
Some of these major problems are: (1) repetitive
I/O disk scans, (2) the huge computation
involved during the candidacy generation, and
(3) the high memory dependency [2]. One of
the key algorithms, which seems to be the most
popular in many applications for enumerating
frequent item sets, is the Apriori algorithm [2].
It uses a monotone property stating that for a
k-item set to be frequent, all its (k-l) item sets
have to be frequent. The use of this
fundamental property reduces the computational
cost of candidate frequent item set generation.
However, in the case of extremely large input
sets with big frequent 1-items set, the Apriori
algorithm still suffers from two main problems
of repeated I/O scanning and high computational
cost.

Tree based algorithms, like FP-Tree, creates a
compact tree-structure, representing frequent
patterns that avoid costive candidate generation
and repeated occurrence frequency checking
against the support threshold. It therefore
achieves better performance and efficiency
than Apriori algorithms. However, the database
still needs to be scanned twice to get the FP-
tree. One scan may be needed for FP-tree
construction and another scan for adding new
items into the tree. This can be very time-
consuming when new data are added to an
existing database because two scans are
needed for not only the new data but also the
existing data. But another tree based algorithm,
P-Tree, is constructed by a single scan of a
database. The pattern tree is used to construct
the corresponding FP-Tree with a specified
support threshold from the P-Tree. Updating
the P-Tree with new data, needs only one scan
of the dataset. The existing data do not need
to be rescanned.

13

SMART Journal of Business Management Studies Vol. 5 No.2 July - December 2009

Our performance study shows, for
synthetic dataset, Pattern Tree achieves better

performance and efficiency than Apriori and
FP algorithms.

1.1. Objectives

The objective of the study is to analyze

the impact of information and knowledge gained,
on applications ranging from business

management, production control and market
analysis, to engineering design and science

exploration.

(i) The major reason that data mining has
attracted a great deal of attention in the

information industry in recent years is due
to the wide availability of huge amounts of

data and the imminent need for turning such
data into useful information and knowledge.

(ii) Association rule mining finds interesting

association or correlation relationship
among a large set of data items.

(iii) The discovery of interesting association

relationship among huge amounts of
business transaction records can help in

many business decision making processes,
such as catalog design, cross marketing,

and loss-leader analysis.

The rest of the paper is organized as
follows: In section 2 we review the Apriori

algorithm . In section 3 and 4, construction of
Pattern Tree, the generation of frequent tree

from Pattern Tree and also the updating of p-
tree are discussed. Performance study is

mentioned in section 5 and we conclude our
study in section 6. Section 7 contains figure &

Tables and Section 8, Reference.

2. Apriori algorithm : Let I= {il,i2,i3,...,im}
be a set of items. Let D, the task-relevant data,

is a set of database transactions where each
transaction T is a set of items such that T is a

subset of I.

Each transaction is associated with an
identifier, called TID. Let A be a set of items.
A transaction T is said to contain A if and only
if A is the subset of T. An association rule is
an implication A ℘ B, where A and B are set
of items in the item set, and A∪B = φ. The
rule A℘B holds in the transaction set D with
supports, where s is the percentage of
transaction in D that contains A∪B. It becomes
P(A∪B). The rule A℘B has confidence c in
the transaction set D if c is the percentage of
transactions in D containing A that also contains
B. IT becomes conditional probability (A/B),
ie. support (A℘B) =P (A∪B) and Confidence
(A℘B) =P (B/A). Association rule mining is a
two-step process [5]:

1. Find all frequent item sets. Each of these
item sets will occur at least as frequently
as predetermined minimum support count.

2. Generate strong association rules from the
frequent item sets and these rules must
satisfy minimum support and minimum
confidence.

2.1. Illustrative Example: Let us look at the
concrete example of Apriori, transaction dataset,
D, of Figure - 1. There are nine transactions
in the dataset, that is, |D|=9. Figure - 3
illustrates the Apriori algorithm for finding
frequent item sets in D [5].

3. Frequent Pattern Tree

3.1. Design and Construction : Let I = {al,
a2, ..., am} be a set of items and a transaction
database DS = {Tl, T2, ...Tn}, where Ti
(Iε [l::n]) is a transaction which contains a set
of items in I. The support of a pattern A, which
is a set of items, is the number of transactions
containing A in DB. A is a frequent pattern if
A’s support is no less than a predefined
minimum support threshold ε. Given a
transaction database OB and a minimum
support threshold, ε, the problem of finding the
complete set of frequent patterns is called the
frequent pattern mining problem.

14

SMART Journal of Business Management Studies Vol. 5 No.2 July - December 2009

3.2: Frequent Pattern Tree: To design a
compact data structure for efficient frequent
pattern mining, let’s first examine an example.
Let the transaction dataset DS, be (the first
two columns of) Figure - 3 and the minimum
support threshold ε = 3[2].

A compact data structure can be designed
based on the following observations.

I. Since only the frequent items will play a
role in the frequent pattern mining, it is
necessary to perform one scan of DS to identify
the set of frequent items.

II. If we store the set of frequent items of
each transaction in some compact structure, it
may avoid repeatedly scanning of DS.

III. If multiple transactions share an
identical frequent item set, they can be merged
into one with the number of occurrences
registered as count.

If two transactions share a common prefix,
according to some sorted order of frequent
items, the shared parts can be merged using
one prefix structure as long as the count is
registered properly. With these observations, one
may construct a frequent pattern tree as
follows. First, a scan of DB derives a list of
frequent items, < (f:4), (c:4), (a:3), (b:3), (m:3),
(p:3)>, (the number after “:” indicates the
support), in which items are ordered in
frequency descending order. This ordering is
important since each path of a tree will follow
this order. The frequent items in each
transaction are listed in this ordering in the
rightmost column of Figure - 3.

Second, one may create the root of a tree,
labeled with “null”. Scan the DS the second
time. The scan of the first transaction leads to
the construction of the first branch of the tree:
<(f:l), (c:l), (a:l), (m:l) (p:l)> . For the second
transaction, since its (ordered) frequent item
list <f, c, a, b, m> shares a common prefix (f;
c; a} with the existing path hf; c; a; m; pi, the

count of each node along the prefix is
incremented by 1, and one new node (b: 1) is
created and linked as a child of (a:2) and
another new node (m:l) is created and linked
as the child of (b:l). For the third transaction,
since its frequent item list {f; b} shares only
the node {f} with the f-prefix sub tree, f’s count
is incremented by 1, and a new node (b:l) is
created and linked as a child of (f:3). The scan
of the fourth transaction leads to the
construction of the second branch of the tree,
<h(c:l), (b: 1), (p: 1)>. For the last transaction,
since its frequent item list <f, c, a, m, p> is
identical to the first one, the path is shared with
the count of each node along the path
incremented by 1.

After scanning all the transactions, the tree
with the associated node-links is shown in
Figure - 4.

Definition 1 (FP-tree) A frequent pattern tree
is a tree structure defined below.

1. It consists of one root labeled as “null”, a
set of item prefix sub trees as the children
of the root, and a frequent-item header
table.

2. Each node in the item prefix sub tree
consists of three fields: item-name, count,
and node-link, where item-name registers
which item this node represents, count
registers the number of transactions
represented by the portion of the path
reaching this node, and node-link links to
the next node in the FP-tree carrying the
same item-name, or null if there is none.

3. Each entry in the frequent-item header table
consists of two fields, (1) item-name and
(2) head of node-link, which points to the
first node in the FP-tree carrying the item-
name.

3.3. Analysis: From the FP-tree construction
process, we can see that one needs exactly
two scans of the transaction dataset, DS: the

15

SMART Journal of Business Management Studies Vol. 5 No.2 July - December 2009

first collects the set of frequent items, and the
second constructs the FP-tree. We will show
that the FP-tree contains the complete
information for frequent pattern mining.

3.4. Mining Frequent Patterns using FP-
Tree: Construction of a compact FP-Tree
ensures that subsequent mining can be
performed with a rather compact data structure.
In this section, we will study how to explore
the compact information stored in a FP-Tree
and develop an efficient mining method for
mining the complete set of frequent patterns.

Property 1 : (Node-link) For any frequent
item ai, all the possible frequent patterns that
contain ai can be obtained by following ai’s
node-links, starting from ai’s head in the FP-
tree header.

Property 2 : (Prefix path) To calculate the
frequent patterns for a node ai in a path P, only
the prefix sub path of node ai in P need to be
accumulated, and the frequency count of every
node in the prefix path should carry the same
count as node.

Lemma 3.1 (Fragment growth) Let α be an
item set in DB, B is α’s conditional pattern
base, and β be an item set in B. Then the
support of α∪β in DB is equivalent to the
support of β in B.

According to the definition of conditional
pattern base, each (sub) transaction in B occurs
under the condition of the occurrence of α in
the original transaction database DB. If an item
set β appears in B ψ times, it appears with α
in DB ψ times as well.

Lemma 3.2: (Single FP-Tree path pattern
generation) : Suppose a FP-tree T has a single
path P. The complete set of the frequent
patterns of T can be generated by the
enumeration of all the combinations of the sub
paths of P with the support being the minimum
support of the items contained in the sub path.

Rationale. Let the single path P of the FP-tree

be <al:sl � a2:s2 � ... : ak :sk> . The support
frequency si of each item ai (for 1� i � k) is
the frequency of ai co-occurring with its prefix
string. That is the combination such as <ai, ...
, aj > (for 1 � i, j � k), is a frequent pattern,
with their co-occurrence frequency being the
minimum support among those items.

4. Pattern Tree Algorithm

4.1. Pattern Generation with the Pattern
Tree: The FP-tree based method has to scan
the database twice to get a FP-Tree. The
central idea of FP-Tree is to get the list L of
item frequencies in the first time and then
construct the FP-Tree in the second time
according to L.

1. A Pattern Tree not only contains the
frequent items but also contains all the items
in the transaction set. We can obtain a P-
Tree through one scan of the database and
get the corresponding FP-Tree from the P-
Tree later. The construction of a P-Tree
can be divided into two steps, i.e., the
transaction database and a minimum
support threshold are given (figure 5 &
figure 6).

2. While retrieving transaction from a
database, first we have to sort the items of
each transaction in some order (alphabetic,
numerical or other specific order).

3. After the first and only scan of the
database, we sort L according to item
supports. The restructure of the P-
Tree consists of similar insertions in the first
step. The only difference is that one needs
to sort the path according to L before
inserting it into a new tree.

4. The approach makes the best use of the
occurrence of the common suffix in
transactions, thereby constructing a more
compact tree structure than FP-Tree.

16

SMART Journal of Business Management Studies Vol. 5 No.2 July - December 2009

4.1.1 Analysis : Figure -7 shows P-Tree
for the dataset specified in figure 5. The
construction of P-Tree requires exactly one
scan of the database and initial P-Tree. FP-
Tree is constructed faster for more high
frequent patterns in the database than the less
frequent patterns in the database. The lower
and upper bound is the runtime of one scan
and two scan of the database respectively.

4.2 : Generation of FP-Tree from the P-
Tree : FP-Tree is a sub-tree of the P-Tree
with a specified support threshold, which
contains those frequent items that meet this
threshold and hereby we can exclude all
infrequent items. After the generation of the
P-Tree, we can easily get the frequent item list
given a specific support threshold. Next, we
have to remove infrequent items from the
frequency list. Then, we prune the P-Tree to
exclude the infrequent nodes by checking the
frequency of each node along the path from
the root to leaves. It is already defined that
frequency of each node is not less than that of
its children or its descendents. So we can delete
the node and its sub trees at the same time if it
is infrequent.

4.2.1: Analysis: Figure- 8 shows FP-Tree
which is constructed from the P-Tree. In
practice, we can compare the user-defined
minimum support threshold with the occurrence
recorded in the item frequency list. So the
pruning could be done according to the following
rules:

1. If the mining support threshold is higher than
the occurrence of most items, then we can
check the items along the path beginning from
the root.

2. When the occurrence of most items is above
the minimum support threshold, we can check
the items along the path beginning from the
leaves in the inverse order following the first
rule.

3. Regardless of which rule is applied, the
algorithm checks at most half the amount of
items in a pattern tree. If the support threshold
is set too high, the process may produce fewer
frequent items and some important rules can
not be generated.

4.3: Pattern Tree updating with new data:
There are two ways to update a FP-Tree. One
is to apply the construction algorithm to the new
database. Next is to set a validity support
threshold (watermark) which is used in [6]. The
water mark goes up to exclude the originally
infrequent items while their frequency goes up.
But unlike FP-Tree, we are able to update P-
Tree by one scan of new data without the need
for two scans of the existing database and the
second scan for the new data. We can first
insert the new transactions into the P-Tree
according to the item frequency list and update
the list. Then a new P-Tree can be restructured
according to the updated item frequency list.
In case there comes a new item, which does
not appear in the existing data base, we can
assume its support is 0 and append it as a leaf
node.

4.3.1: analysis: The major problem concerning
the FP-tree is to handle updates in the database.
Once some new transactions are added, a new
FP-tree has to be constructed to deal with
these changes. But the advantages of P-tree
algorithm for updating the database are as
follows.

1. There is no further need to scan the existing
database.

2. We need to scan the new data only once.
But a FP-Tree is obtained by two scans of
the entire database, including the existing
and new database.

5. Tests and Results: In this section we
present a performance analysis of FP-Tree with
the frequent pattern algorithm Apriori and a
recently proposed method of Pattern Tree.

17

SMART Journal of Business Management Studies Vol. 5 No.2 July - December 2009

Pattern Tree Technique is implemented with
C++. We have performed experiments with
multiple FP-Tree generation and FP-Tree
updating with P-Tree while new data are added.
To test the efficiency of the Pattern tree, we
have implemented Apriori algorithm and FP-
Tree specified on [4] by using C++ and
executed for various synthetic dataset in ‘
Pentium IV processor, 256 Mbytes RAM, l.8
GHz CPU machine with windows 2000
operating system. Our test results show that
Pattern Tree method outperforms for synthetic
datasets FP-Tree and Apriori algorithm.

6. Conclusion: In this paper, we have
discussed about how to obtain the P-Tree by
one database scan and how to update the P-
Tree by one scan of new data and we also
discussed how to get the corresponding FP-
Tree from the P-Tree with different user
specified thresholds.

Based on the study, Pattern tree method
is preferable to the traditional minimum support
algorithm Apriori and the Frequent Pattern Tree
pattern. Apriori and FP Tree require more than
one scan of database whereas P-Tree method
scan the database only once and the updating
of the database also requires only one scan.

References :

1. Mohammad El-Hajj, Osmar R.Zaiane, COFI-tree
mining: A New Approach to Pattern Growth
with Reduced Candidacy Generation.

2. J.Han, J. Pel, J. Yin. Mining Frequent Patterns
without Candidate Generation. In: Proc. of
SIGMOD’00. pp. 1-12, 2000.

3. M.Y.Chen, J.Han, and P.Yu. Data Mining: An
overview from a Database Perspective. An IEEE
Transactions on knowledge and Data
Engineering.

4. H.Huang, X. Wu and R.Retue. Association
Analysis with one scan of databases. University
of Vermont computer science technique report.

5. Jaiwei Han, Micheline Kamber.Data Mining
concepts and Techniques. (Morgan Kaufmann
publishers).

6. Wuhan University Journal of Natural Sciences,
Multi-dimensional customer data analysis in
online auctions Wuhan University Journals
Press, Volume 12, Number 5 / September, 2007.

7. Dejiang Jin and Sotirios G. Ziavras, “A Super-
Programming Approach For Mining Association
Rules in Parallel on PC Clusters, “ IEEE Trans.
Parallel and Distributed Systems, Vol. 15, No. 9,
Sept. 2004.

8. Ke Wang, Yu He, and Jiawel Pushing Support
Constraints into Association rules Mining IEEE
transaction on knowledge and data engineering
May 2003.

9. Margaret H. Dunham Data Mining and
Advanced Topics Pearson Education 2004.

10. Coenen, F., Leng, P., Goulbourne, G. Tree
Structures for Mining Association Rules.
Journal of Data Mining and Knowledge
Discovery, Vol 15 (7), pp391- 398.

11. Dr. E. Ramaraj and N. Venkatesan, Discrete
Topological Mining Association Rules-An
Approach, IRIS’06 at National Engineering
College, January-2006.

18

SMART Journal of Business Management Studies Vol. 5 No.2 July - December 2009

Figure - 1 : Transaction dataset
Figure - 2 : Generation of candidate

item sets and Frequent item sets with

the minimum support = 2

Figure - 3 : A Transaction Dataset DS

TID Items Frequent items

 100 f,a,c,d,g,I,m,p f,c a,m,p

200 a,b,c,f,l,m,a f,c,a,b,m

300 b,f,n,j,o f,b

400 b,f,c,k,a,p c,b,p

500 a,f,c,e,l,p,m,n f,c,a,m,p

Figure - 4 : The FP-tree construction

19

T-id List of item I Ds
T100
T200
T300
T400
T500
T600
T700
T800
T900

I1, I2, I5
I2, I4
I2, I3
I1, I2, I4
I1, I3
I2, I3
I1, I3
I1, I2, I3, I5
I1, I2, I3

SMART Journal of Business Management Studies Vol. 5 No.2 July - December 2009

Figure - 5 : A transaction database TDB

TID Items
Ordered
Items

T100 i,c,d,e,g,h c,d,e,h,l,g
T200 m,a,p,c,e,d c,d,e,a,p,m
T300 a,l,b,d,e,g d,e,a,b,l,g
T400 b,a,d,h,c,n, c,d,a,h,b,n
T500 a,e,c, c,e,a,
T600 n,a,c,d,e, c,d,e,a,n

T700 p,,b,c,d,e,h c,d,e,a,h,b,p

Figure - 6 : FL-List

Item Count

D 6
c 6

e 6
a 6

h 3

b 3

i 2
g 2

n 2

Figure - 7
The P-tree constructed from TDB

Figure - 8
FP-tree constructed from P-tree

in figure 3

20

